A LIMIT THEOREM FOR THE PERRON–FROBENIUS OPERATOR OF TRANSFORMATIONS ON [0,1] WITH INDIFFERENT FIXED POINTS

BY

MAXIMILIAN THALER

Institute of Mathematics, University of Salzburg Hellbrunnerstraße 34, 5020 Salzburg, Austria e-mail: thaler@edvz.sbg.ac.at

ABSTRACT

A limit theorem is proved for $\left\{\sum_{k=0}^{n-1} P^k\right\}_{n=1}^{\infty}$, where P is the Perron-Frobenius operator associated with transformations on the unit interval with indifferent fixed points.

1. Introduction

In [9] a limit theorem is obtained for $\{\sum_{k=0}^{n-1} P^k\}_{n=1}^{\infty}$, where P is the Perron-Frobenius operator associated with transformations T on the unit interval with an indifferent fixed point at x=0. The local behaviour of T at 0 is assumed to be of the form

$$T(x) = x + ax^2 + o(x^2)$$
 with $a > 0$.

As a consequence the absolutely continuous invariant measure is infinite.

The purpose of the present paper is to prove a theorem of this type for transformations T on [0,1] with finitely many indifferent fixed points under more general conditions on the local behaviour of T at these points. They are merely assumed to be regular sources giving rise to an infinite invariant measure. The class of transformations treated here is the same as in [21].

Received July 7, 1993 and in revised form February 1, 1994

In section 2 we introduce the necessary definitions and notations and recall some known facts. Section 3 contains the basic estimates and the main result. In section 4 we use J. Aaronson's method to determine the normalizing sequences for some examples.

For transformations as considered in [9] with

$$T(x) = x + ax^{d+1} + o(x^{d+1}) \quad (x \to 0),$$

where $0 < d \le 1$, results on the rate of convergence are obtained in [11]. The resulting invariant measure is finite for d < 1.

2. Preliminaries

Let $\xi_1 = \{B(k): k \in I\}$ be a collection of pairwise disjoint subintervals of [0,1] such that $\lambda\left(\bigcup_{k\in I} B(k)\right) = 1$, where λ denotes the Lebesgue measure on the σ -field \mathcal{B} of Lebesgue measurable subsets of [0,1]. We consider transformations on [0,1] satisfying the following conditions (cf. [21]).

- (1) $T|_{B(k)}$ is twice differentiable, and $\overline{TB(k)} = [0,1]$ for all $k \in I$. There is a non-empty finite set $J \subseteq I$ such that each $B(j), j \in J$, contains a fixed point x_j with $T'(x_j) = 1$.
- (2) $|T'| \ge \rho(\varepsilon) > 1$ on $\bigcup_{k \in I} B(k) \setminus \bigcup_{j \in J} (x_j \varepsilon, x_j + \varepsilon)$ for each $\varepsilon > 0$.
- (3) For $j \in J$, T' is decreasing on $(x_j \eta, x_j) \cap B(j)$ and increasing on $(x_j, x_j + \eta) \cap B(j)$ for some $\eta > 0$.
- (4) $T''/(T')^2$ is bounded on $\bigcup_{k\in I} B(k)$.

In particular, $T|_{B(k)}$ has a C^1 -extension to $\overline{B(k)}$ for every $k \in I$, and condition (2) is equivalent to

(2)'
$$T'>1$$
 on $\overline{B(j)}\setminus\{x_j\}$ for $j\in J$, and $|T'|\geq\rho$ on $\bigcup_{k\in I\setminus J}B(k)$ with $\rho>1$.

We use the notations

$$B(k_1, ..., k_n) = \bigcap_{i=1}^n T^{-i+1}(B(k_i)), \quad (k_1, ..., k_n) \in I^n,$$

$$\xi_n = \{B(k_1, ..., k_n) : (k_1, ..., k_n) \in I^n\}, \quad n \ge 1.$$

For $Z = B(k_1, ..., k_n)$, $f_Z \equiv f_{k_1,...,k_n}$ denotes the C^1 -extension of $(T^n|_Z)^{-1}$ to [0,1].

According to the results in [21], T is conservative and exact with respect to λ and admits an invariant measure m equivalent to λ such that the density $dm/d\lambda$ has a version of the form

$$h(x) = h_0(x) \prod_{j \in J} \frac{x - x_j}{x - f_j(x)}, \quad x \in [0, 1] \setminus \{x_j : j \in J\},$$

where h_0 is continuous and positive on [0,1]. Since f_j'' is bounded on (0,1) this formula implies that m is infinite.

Let $P: L_1(\lambda) \to L_1(\lambda)$ denote the Perron-Frobenius operator for T with respect to λ , defined by the relation

$$\int_A Pu\,d\lambda = \int_{T^{-1}(A)} u\,d\lambda \quad ext{ for all } \ u \in L_1(\lambda) \ ext{ and all } \ A \in \mathcal{B}\,.$$

In our case $P^n (n \ge 1)$ is given by

$$P^n u = \sum_{Z \in \mathcal{E}_-} u \circ f_Z \cdot \mid f_Z' \mid.$$

Since T is exact and m is infinite,

$$\lim_{n \to \infty} \int_A P^n u \, d\lambda = 0$$

holds for all $u \in L_1(\lambda)$ and all $A \in \mathcal{B}$ with $m(A) < \infty$.

To see this, let $u \in L_1(\lambda)$ be non-negative and let B be a measurable set with $0 < m(B) < \infty$. Putting

$$v = \frac{\int u \, d\lambda}{m(B)} \; h \cdot 1_B$$

we have

$$\int_A P^n u \, d\lambda \leq \|P^n u - P^n v\|_1 + \frac{\int u \, d\lambda}{m(B)} m(B \cap T^{-n} A).$$

Since T is exact and $\int (u-v)d\lambda = 0$,

$$\lim_{n\to\infty} \|P^n u - P^n v\|_1 = 0.$$

Due to the invariance of m

$$m(B \cap T^{-n}A) \le m(A),$$

and therefore

$$\overline{\lim} \int_A P^n u \, d\lambda \leq \frac{\int u \, d\lambda}{m(B)} m(A).$$

Since m(B) may be chosen arbitrarily large, (\star) follows.

As an immediate consequence, $P^n u \to 0$ in measure with respect to λ for each u in $L_1(\lambda)$. Thus $P^n u$ tends to become small in this sense with increasing n. In order to obtain non-trivial limit theorems this tendency has to be compensated by suitable normalizations.

3. The main result

THEOREM: Let T satisfy the conditions (1) – (4). Then there exists a sequence $\{a_n\}$ of positive numbers such that for all Riemann-integrable functions u on [0,1]

$$\frac{1}{a_n} \sum_{k=0}^{n-1} P^k u \to \left(\int u \ d\lambda \right) h$$

uniformly on compact subsets of $[0,1] \setminus \{x_j: j \in J\}$, where h is a version of the invariant density of T continuous on $[0,1] \setminus \{x_j: j \in J\}$.

The basic estimates are contained in the following Lemmas. Throughout T is assumed to satisfy the conditions (1) - (4).

We introduce the notations

$$\begin{split} G_{j}(x) &= \frac{x - x_{j}}{x - f_{j}(x)} \,, \quad x \in [0, 1] \setminus \{x_{j}\}, \quad j \in J, \\ \alpha &= \min\{\alpha_{1}, 1 - \alpha_{2}\}, \quad \text{where} \\ \alpha_{1} &= \min\{x_{j} \colon j \in J, \; x_{j} > 0\}, \quad \alpha_{2} &= \max\{x_{j} \colon j \in J, \; x_{j} < 1\}, \end{split}$$

and, for $x \in (0, \alpha)$,

$$G(x) = \max\{G^{-}(x), G^{+}(x)\}, \text{ where}$$

 $G^{-}(x) = \max\{G_{j}(x_{j} - x): j \in J, x_{j} > 0\},$
 $G^{+}(x) = \max\{G_{j}(x_{j} + x): j \in J, x_{j} < 1\},$

with obvious versions if $\{x_j: j \in J\} = \{0\}$ or $\{1\}$.

Furthermore, let

$$A_x = [0,1] \setminus \bigcup_{j \in I} (x_j - x, x_j + x) \quad \text{ for } x > 0.$$

We follow the convention to put

$$f_{k_s,\ldots,k_n} = id$$
, and consequently $f'_{k_s,\ldots,k_n} = 1$,

if s > n.

LEMMA 1: There exists a constant K_0 such that for all $x \in (0, \alpha)$, for all $n \ge 1$ and all $(k_1, \ldots, k_n) \in I^n$

$$\sum_{s=1}^{n+1} |f'_{k_s,...,k_n}(t)| \le K_0 G(x) \quad \text{for } t \in A_x.$$

Proof: Choose $\eta > 0$, ρ as in (2)', $\vartheta \in \left[\frac{1}{\rho}, 1\right)$ and $\delta \in (0, \eta)$ such that the following conditions hold for each $j \in J$:

$$\begin{split} (x_j - \eta, x_j + \eta) &\cap [0, 1] \subseteq B(j, j), \\ f_j' & \text{ is increasing on } (x_j - \eta, x_j) \cap [0, 1] \quad \text{and} \\ & \text{ decreasing on } (x_j, x_j + \eta) \cap [0, 1], \\ f_j' &\leq \vartheta \quad \text{on } [0, 1] \setminus (x_j - \eta, x_j + \eta), \quad \text{and} \\ f_j'(x_j - \delta) &\geq \vartheta \quad \text{if} \quad x_j > 0, \quad \text{and} \\ f_j'(x_j + \delta) &\geq \vartheta \quad \text{if} \quad x_j < 1. \end{split}$$

We note first that

$$|f_k'(t)| \leq \vartheta, \quad \text{if } k \notin J \text{ and } t \in [0,1], \quad \text{and}$$

$$|f_j'(t)| \leq \vartheta, \quad \text{if } j \in J \text{ and } t \notin B(j).$$

In the first case, by condition (2)'

$$|f'_k(t)| = \frac{1}{|T'(f_k(t))|} \le \frac{1}{\rho} \le \vartheta;$$

in the second case, $t \in [0,1] \setminus (x_j - \eta, x_j + \eta)$.

Furthermore, for all $x \in (0, \delta)$, all $j \in J$ and all $n \ge 1$,

$$(\star\star) \qquad (f_j^n)'(t) \le \begin{cases} (f_j^n)'(x_j - x), & t \in [0, x_j - x], \\ (f_j^n)'(x_j + x), & t \in [x_j + x, 1]. \end{cases}$$

We verify the first estimate. If $t \in [0, x_j - \eta]$,

$$f_i'(t) \le \vartheta \le f_i'(x_j - \delta) \le f_i'(x_j - x),$$

where the last step follows from the convexity of f_j on $(x_j - \eta, x_j)$. By the same reason

$$f'_i(t) \le f'_i(x_j - x)$$
 for $t \in (x_j - \eta, x_j - x]$.

This proves the assertion for n = 1. For the general case we use the chain rule

$$(f_j^n)'(t) = \prod_{s=0}^{n-1} f_j'(f_j^s(t)).$$

If $t \in [0, x_j - x]$, $f_j^s(t) \in [0, f_j^s(x_j - x)]$ and $f_j^s(x_j - x) = x_j - x'$ with $x' \in (0, \delta)$. Therefore we can apply the case n = 1 to obtain

$$f_j'(f_j^s(t)) \le f_j'(f_j^s(x_j - x)),$$

and thus

$$(f_j^n)'(t) \le (f_j^n)'(x_j - x).$$

Now we fix $x \in (0, \delta)$, $t \in A_x$, $n \ge 1$, and $(k_1, \ldots, k_n) \in I^n$. Let $m \in \mathbb{N}_0$ denote the number of indices $s \in \{1, \ldots, n\}$ for which

$$k_s \notin J$$

or

$$k_s \in J$$
 and $k_{s+1} \neq k_s$.

If $m \ge 1$, let $1 \le i_1 < \cdots < i_m \le n$ denote these indices, and put $i_0 = 0$, $i_{m+1} = n+1$ for all $m \ge 0$. Then, including the case m = 0,

$$\sum_{s=1}^{n+1} |f'_{k_s,\dots,k_n}(t)| = \sum_{r=1}^{m+1} \sum_{s=i_{r-1}+1}^{i_r} |f'_{k_s,\dots,k_n}(t)|.$$

For $i_{r-1} < s \le i_r$,

$$f_{k_s,...,k_n} = f_j^{i_r-s} \circ f_{k_{i_r},...,k_n} \quad \text{ for some } \ j \in J,$$

hence

$$f'_{k_s,...,k_n}(t) = \left(f_j^{i_r-s}\right)' \left(f_{k_{i_r},...,k_n}(t)\right) f'_{k_{i_r},...,k_n}(t).$$

Taking into account that $|f'_k| \leq 1$ for all $k \in I$ we obtain using (\star)

$$| f'_{k_{i_r},...,k_n}(t) | = \prod_{i=i_r}^n | f'_{k_i} (f_{k_{i+1},...,k_n}(t)) |$$

$$\leq \prod_{\nu=r}^m | f'_{k_{i_\nu}} (f_{k_{i_{\nu+1},...,k_n}}(t)) |$$

$$\leq \vartheta^{m-r+1}.$$

Again by the definition of the indices i_{ν} , $f_{k_{i_{\tau}},...,k_{n}}(t) \notin B(j,j)$ if $r \leq m$, and $f_{k_{i_{\tau}},...,k_{n}}(t) = t$ if r = m+1. In both cases $f_{k_{i_{\tau}},...,k_{n}}(t) \in [0,1] \setminus (x_{j}-x,x_{j}+x)$. Assume $f_{k_{i_{\tau}},...,k_{n}}(t) \in [0,x_{j}-x]$. Then by $(\star\star)$

$$\left(f_{j}^{i_{r}-s}\right)'\left(f_{k_{i_{r}},\ldots,k_{n}}(t)\right) \leq \left(f_{j}^{i_{r}-s}\right)'(x_{j}-x),$$

and we obtain using the Lemma in [20], p. 305

$$\sum_{s=i_{r-1}+1}^{i_r} |f'_{k_s,...,k_n}(t)| \le \vartheta^{m-r+1} \sum_{s=i_{r-1}+1}^{i_r} (f_j^{i_r-s})'(x_j - x)$$

$$\le \vartheta^{m-r+1} G_j(x_j - x)$$

$$\le \vartheta^{m-r+1} G(x).$$

The same bound results, if $f_{k_{i_r},...,k_n}(t) \in [x_j + x, 1]$. Hence we have

$$\sum_{s=1}^{n+1} |f'_{k_s,\dots,k_n}(t)| \le \sum_{r=1}^{m+1} \vartheta^{m-r+1} G(x) \le \frac{G(x)}{1-\vartheta}.$$

Choosing a suitable constant K_0 we obtain the estimate for all $x \in (0, \alpha)$.

The main step in the proof of the theorem is to show the asserted convergence for functions u of the form

$$u=\sum_{Z\in\mathcal{A}}\mid f_Z'\mid,$$

where \mathcal{A} is a non-empty subclass of ξ_n for some fixed n. The arguments in the proof of the following Lemma show that these functions are continuous on [0,1] and have bounded derivative on (0,1). Moreover, u > 0 on [0,1]. This is the reason why we deal first with functions of this type (cf. also [15]).

We introduce the following notation:

$$u_n = P^n u, \quad n \geq 0.$$

LEMMA 2: Let u be continuous and positive on [0,1] and differentiable on (0,1), and let u' be bounded on (0,1). Then u_n $(n \ge 0)$ is of the same type, and there exists a constant K = K(u) such that

$$|u'_n| \leq K G(x) \cdot u_n$$
 on $A_x \cap (0,1)$

for all $n \ge 0$ and all $x \in (0, \alpha)$.

Proof: Formal differentiation of

$$u_n = \sum_{Z \in \mathcal{E}_n} u \circ f_Z \cdot f_Z' \cdot \sigma_Z, \qquad \sigma_Z = \operatorname{sign} f_Z',$$

yields

$$(\star) u'_n = \sum_{Z \in \xi_n} u' \circ f_Z \cdot (f'_Z)^2 \cdot \sigma_Z + \sum_{Z \in \xi_n} u \circ f_Z \cdot f''_Z \cdot \sigma_Z.$$

For $Z = B(k_1, \ldots, k_n)$,

$$\left| \frac{f_Z''}{f_Z'} \right| = \left| \sum_{j=1}^n \frac{f_{k_j}'' \circ f_{k_{j+1},\dots,k_n}}{f_{k_j}' \circ f_{k_{j+1},\dots,k_n}} f_{k_{j+1},\dots,k_n}' \right|$$

$$\leq M \cdot \sum_{j=1}^n |f_{k_{j+1},\dots,k_n}'| \quad \text{on } (0,1),$$

where M is a bound of $|T''|/(T')^2$ according to condition (4).

Since $|f'_{k_{j+1},\dots,k_n}| \leq 1$ we have for some constant $\beta = \beta_n$

$$|f_Z'|, |f_Z''| \le \beta \cdot \lambda(Z)$$
 on $(0,1)$ for all $Z \in \xi_n$.

Therefore u_n is of the same type as u, and u'_n is given by (\star) . Thus,

$$|u'_n| \le c u_n + \sum_{Z \in \mathcal{E}} u \circ f_Z \cdot |f''_Z|$$
 on $(0,1)$,

where $c = \sup_{t \in (0,1)} (|u'(t)| / u(t)).$

Now let $x \in (0, \alpha)$ and $t \in A_x \cap (0, 1)$. Using Lemma 1 we obtain from $(\star\star)$

$$|f_Z''(t)| \leq MK_0 G(x) |f_Z'(t)|,$$

and therefore

$$|u'_n(t)| \le (c + MK_0 G(x)) u_n(t)$$

 $\le (c + MK_0) G(x) u_n(t).$

By the usual mean value argument we have as an immediate consequence:

For each function u as in Lemma 2, for all $x \in (0, \alpha)$, all $n \ge 0$ and all t_1, t_2 in the same component E of A_x ,

$$u_n(t_1) \le e^{c(x)} u_n(t_2)$$
 with $c(x) = K G(x)$.

These estimates give a deeper insight into the asymptotic behaviour of the sequence $\{u_n\}$. For, by integration, we obtain for all $t \in E$

$$e^{-c(x)}\int_E u_n d\lambda \le \lambda(E) \cdot u_n(t) \le e^{c(x)}\int_E u_n d\lambda, \quad n \ge 0.$$

The upper estimate and the remarks in section 2 show that $\{u_n\}$ and $\{u'_n\}$ tend to 0 uniformly on $A_x \cap (0,1)$. Since T is conservative and ergodic, the lower estimate shows that $\left\{\sum_{k=0}^{n-1} u_k\right\}$ tends to infinity uniformly on A_x .

Proof of the Theorem: Let E_1, \ldots, E_s denote the components of $[0,1] \setminus \{x_j \colon j \in J\}$. Choose $t_i \in E_i, \ 1 \le i \le s$, such that $T(t_i) = t_1, \ 2 \le i \le s$, and $\varepsilon \in (0,\alpha)$ such that $t_i \in A_{\varepsilon} \cap E_i, \ 1 \le i \le s$. Let further

$$\kappa = \max\left\{ |T'(t_i)| : 2 \le i \le s \right\}.$$

Suppose first u is as in Lemma 2. According to the above estimates we have for every $x \in (0, \varepsilon)$ and every $k \ge 0$

$$u_k \le e^{c(x)} u_k(t_i) \text{ and } |u_k'| \le c(x)e^{c(x)} u_k(t_i) \quad \text{ on } A_x \cap (0,1) \cap E_i, \quad 1 \le i \le s.$$

For $2 \le i \le s$ we have in addition

$$u_{k+1}(t_1) = (Pu_k)(t_1) = \sum_{t \in T(t) = t, } \frac{u_k(t)}{|T'(t)|} \ge \kappa^{-1} u_k(t_i).$$

Therefore the functions

$$U_n = \left(\sum_{k=0}^{n-1} u_k\right) / \left(\sum_{k=0}^{n-1} u_k(t_1)\right) \quad (n \ge 1)$$

are uniformly bounded on A_x and Lipschitz on each component of A_x with a common constant L(x).

Let h denote the version of the invariant density which is continuous on $[0,1] \setminus \{x_j : j \in J\}$ and normalized by $h(t_1) = 1$. A diagonalization argument based on the Theorem of Arzelà-Ascoli shows that each subsequence of $\{U_n\}$ has a subsequence converging to a continuous function uniformly on compact subsets of $[0,1] \setminus \{x_j : j \in J\}$. On the other hand, if a subsequence of $\{U_n\}$ converges to a function g uniformly on compact subsets of $[0,1] \setminus \{x_j : j \in J\}$, then Pg = g and hence g = h by the uniqueness of h. Therefore the sequence $\{U_n\}$ tends to h pointwise on $[0,1] \setminus \{x_j : j \in J\}$. Finally, a 3ε -argument shows that this convergence is uniform on A_x for each $x \in (0,\varepsilon)$.

By the Chacon-Ornstein Theorem for every two functions u, v of this type

$$\sum_{k=0}^{n-1} u_k(t_1) \sim \frac{\int u \, d\lambda}{\int v \, d\lambda} \sum_{k=0}^{n-1} v_k(t_1) \quad (n \to \infty).$$

Hence we can choose one fixed sequence $\{a_n\}$ of positive numbers to obtain

$$\frac{1}{a_n} \sum_{k=0}^{n-1} u_k \to \left(\int u \, d\lambda \right) \cdot h$$

uniformly on A_x for all $x \in (0, \varepsilon)$ and all functions u considered so far.

The rest of the proof is an approximation procedure.

First note that the asserted limiting behaviour also holds for functions v on [0,1] such that v=u on the open interval (0,1) and u is a above.

As already stated, if A is a non-empty class of cylinders of some fixed order, the function

$$u = \sum_{Z \in \mathcal{A}} |f_Z'|$$

satisfies the conditions of Lemma 2.

The last two remarks imply that

$$\frac{1}{a_n} \sum_{k=0}^{n-1} P^k 1_A \to \lambda(A) \cdot h$$

uniformly on A_x for all $x \in (0, \varepsilon)$, if A is an interval whose endpoints are endpoints of cylinders of a given order or accumulation points thereof.

Finally, if u is a non-negative Riemann-integrable function, we approximate u from below and from above by step functions which are constant on intervals of the preceding type. This then finishes the proof of the Theorem.

4. Examples

In order to obtain the sequence $\{a_n\}$ in case the behaviour of T at the fixed points $\{x_j: j \in J\}$ is sufficiently specified, we follow J. Aaronson [3]. We may assume that $\{a_n\}$ is increasing.

Let

$$V(t) = \sum_{n=0}^{\infty} (a_{n+1} - a_n)t^n, \quad t \in (0,1) \quad (a_0 = 0).$$

According to the terminology in [3] our theorem implies that any set $A \in \mathcal{B}$ of positive measure which is bounded away from x_j for each $j \in J$ and satisfies $\lambda(\partial A) = 0$ is a Darling-Kac set, and

$$(m(A))^2 \cdot a_n \sim \sum_{k=0}^{n-1} m\left(A \cap T^{-k}(A)\right) \quad (n \to \infty).$$

Thus for any such set A the asymptotic renewal equation in [3] gives

$$V(t) \sim \frac{1}{(1-t)Q(t)} \quad (t \to 1),$$

where

$$Q(t) = \sum_{n=0}^{\infty} q_n t^n$$

with

$$\sum_{k=0}^{n-1} q_k = m \left(\bigcup_{k=0}^{n-1} T^{-k}(A) \right) = : L_A(n), \quad n \ge 1.$$

It is shown in [21], Theorem 3, that the order of $\{L_A(n)\}\$ does not depend on A.

Example 1: Suppose first that $\{x_j: j \in J\} \subseteq \{0,1\}$, and

$$T(x) = x \pm a_j(x - x_j)^2 + o((x - x_j)^2) \quad (x \to x_j)$$

with $a_j > 0$, $j \in J$. Then the invariant density has the form

$$h(x) = g(x) \prod_{i \in J} |x - x_i|^{-1}$$

with g continuous and positive on [0,1], and

$$\sum_{k=0}^{n-1} q_k \sim c \cdot \log n \quad (n \to \infty)$$

with $c = \sum_{j \in J} g(x_j)$ ([21], Theorem 4). Hence,

$$Q(t) \sim c \cdot \log \frac{1}{1-t} \quad (t \to 1),$$

and therefore

$$V(t) \sim \frac{1}{c(1-t)\log\frac{1}{1-t}}$$
 $(t \to 1)$.

The application of a Tauberian Theorem (see e.g. [10]) yields

$$a_n \sim \frac{1}{c} \cdot \frac{n}{\log n} \qquad (n \to \infty)$$

(cf. [9], [11]).

Example 2: Let T satisfy (1) – (4) and assume that for each $j \in J$

$$T(x) = x \pm a_j |x - x_j|^{p_j + 1} + o(|x - x_j|^{p_j + 1}) \quad (x \to x_j),$$

where $a_j > 0$, $p_j \ge 1$, and $\max\{p_j : j \in J\} > 1$.

The invariant density is given by

$$h(x) = g(x) \prod_{j \in J} |x - x_j|^{-p_j}$$
 (g continuous and positive on [0, 1]).

With the notations

$$p = \max\{p_j : j \in J\}, \quad \alpha = \frac{1}{p},$$
 $J_0 = \{j \in J : p_j = p\},$
 $\varepsilon(x) = 2 - 1_{\{0,1\}}(x), \quad \text{and}$
 $c_j = g(x_j) \prod_{i \in J, i \neq j} |x_j - x_i|^{-p_i}, \quad j \in J,$

we have

$$\sum_{k=0}^{n-1} q_k \sim \frac{c}{1-\alpha} \cdot n^{1-\alpha} \quad (n \to \infty),$$

where

$$c = \frac{1}{p^{\alpha}} \sum_{j \in J_0} \varepsilon(x_j) c_j a_j^{1-\alpha}.$$

By the same procedure as in Example 1 we obtain

$$a_n \sim \frac{1}{c} \cdot \frac{\sin \pi \alpha}{\pi \alpha} \cdot n^{\alpha} \quad (n \to \infty).$$

Example 3: Let f(0) = 0, $f(x) = x + x^2 \cdot e^{-1/x}$, x > 0, and let $a \in (0,1)$ be determined by f(a) = 1. Define T on [0,1] by

$$T(x) = \begin{cases} f(x), & x \in [0, a], \\ \frac{x-a}{1-a}, & x \in (a, 1] \text{ (cf. [21], p. 94)}. \end{cases}$$

For this map

$$h(x) = g(x)e^{\frac{1}{x}}/x$$
 (g continuous and positive on [0, 1]),

and

$$\sum_{k=0}^{n-1} q_k \sim g(0) \cdot \frac{n}{\log n} \quad (n \to \infty).$$

Hence

$$a_n \sim \frac{1}{g(0)} \cdot \log n \quad (n \to \infty).$$

Example 4 and correction to [20]: For r > 0 let the map $T: \mathbb{R} \to \mathbb{R}$ be given by

$$T(x) = x - \frac{1}{x^r}, \quad x > 0,$$

$$T(x) = -T(-x), \quad x < 0.$$

In [16] it is shown that for each r > 0 the transformation T is conservative and exact with respect to λ and admits an invariant measure $m \sim \lambda$ such that the density h_T has the form

$$h_T(x) = h_0(x) (1+|x|)^{r-1/r}, \quad x \in \mathbb{R},$$

where h_0 is continuous and bounded away from 0 and ∞ on IR. In particular, m is infinite if and only if

$$r \geq \frac{\sqrt{5}-1}{2}.$$

The case r=1 is the well-known Boole's transformation with $h_T\equiv 1$.

The cases r = 2n + 1, $n \in \mathbb{N}_0$, are also considered in [20]. The order of the invariant density stated there is not correct for $n \geq 1$. The error comes from the fact that for $n \geq 1$ the conjugated map on [0,1] considered in [20] has slope 0 at the point $\frac{1}{2}$ and hence does not satisfy the crucial condition (T1) in [20]. According to the above representation of h_T the correct order for r = 2n + 1 is

$$r - \frac{1}{r} = 2n \frac{2n+2}{2n+1}.$$

In the following let r be in the interval $\left[\frac{\sqrt{5}-1}{2}, \infty\right)$. To obtain a suitable conjugate on [0,1] we use the function

$$\varphi(x) = \int_{-\infty}^{x} \psi(t) dt, \quad x \in \mathbb{R},$$

where

$$\psi(t) = c_r \cdot (3 + |t|^{r+1})^{-1/r}, \quad t \in \mathbb{R},$$

and c_r is chosen in such a way that $\varphi(\infty) = 1$. Let then $S : [0,1] \to [0,1]$ be given by $S = \varphi T \varphi^{-1}$.

We claim that S satisfies our conditions (1) - (4) with

$$S(x) = x + ax^{p+1} + o(x^{p+1}) \quad (x \to 0),$$

where p = r(r+1) and $a = 1/r(rc_r)^p$. To see this we analyse the branch $S|_{[\frac{1}{2},1]}$. For $x \in (\frac{1}{2},1)$,

$$S'(x) = G(\varphi^{-1}(x)),$$

where

$$G(y) = \frac{(\psi \circ T)(y) \cdot T'(y)}{\psi(y)} = G_1(y^{r+1}),$$

and

$$G_1(z) = (r+z) \left(\frac{3+z}{3z^r + |z-1|^{r+1}} \right)^{1/r} \quad (y, z > 0).$$

These formulae show that S has a C^1 -extension to $\left[\frac{1}{2},1\right]$ with S'(1)=1 and a C^2 -extension to $\left[\frac{1}{2},1\right)$.

In order to see that S'>1 on $[\frac{1}{2}\,,1)$ we distinguish three cases. If $r\geq 1,$ for all $z\geq 0$

$$(r+z)^r(3+z) \ge (1+z^r)(3+z) > 3z^r + z^{r+1} + 1 \ge 3z^r + |z-1|^{r+1},$$

i.e. $G_1(z) > 1$. If $z \ge 1$, for all r > 0

$$(r+z)^r(3+z) > z^r \cdot (3+z) > 3z^r + |z-1|^{r+1},$$

hence $G_1(z) > 1$. If r < 1 and $z \in [0,1]$ we argue as follows. The function $f(z) = 3((r+z)^r - z^r)$ is decreasing on [0,1], and

$$f(1) = 3((r+1)^r - 1) > 1$$
 since $r \ge \frac{\sqrt{5} - 1}{2}$.

Hence

$$3((r+z)^r - z^r) > 1 \ge (1-z)^{r+1} - z(r+z)^r, \quad z \in [0,1],$$

or, equivalently, $G_1(z) > 1$.

From the relation

$$\frac{d}{dz} \left((G_1(z))^r \right) = \frac{(r+z)^{r-1}}{(3z^r + |z-1|^{r+1})^2} \left\{ 3z^{r+1} + 4r|z-1|^{r+1} - (r+1)(r+4)z|z-1|^r \operatorname{sign}(z-1) + o(z^{r+1}) \right\} \quad (z \to \infty)$$

we obtain

$$\lim_{z \to \infty} z^2 G_1'(z) = -\frac{r^2 + r + 1}{r}.$$

Since $G'_1(z) < 0$ for z sufficiently large, S' is decreasing in a neighbourhood of x = 1.

Finally, putting p = r(r+1) we obtain

$$(p+1)\lim_{x\to 1} \frac{S(x)-x}{(1-x)^{p+1}} = \lim_{x\to 1} \frac{1-S'(x)}{(1-x)^p}$$

$$= \lim_{y\to \infty} \frac{1-G(y)}{(1-\varphi(y))^p}$$

$$= \lim_{y\to \infty} \left(\frac{y^{-1/r}}{1-\varphi(y)}\right)^p \cdot \lim_{y\to \infty} \frac{G'(y)}{(r+1)y^{-r-2}}$$

$$= \left(\frac{1}{rc_r}\right)^p \lim_{z\to \infty} z^2 \cdot G'_1(z)$$

$$= -\frac{p+1}{r(rc_r)^p}.$$

In particular, S has a C^2 -extension to $\left[\frac{1}{2},1\right]$, and hence condition (4) also holds. This concludes the proof of the asserted properties of S.

Now there exists a sequence $\{a_n\}$ of positive numbers such that for all Riemann-integrable functions u on [0,1]

$$\frac{1}{a_n} \sum_{k=0}^{n-1} P_S^k u \to \left(\int u \, d\lambda \right) h_S$$

uniformly on compact subsets of (0,1), where P_S is the Perron-Frobenius operator for S and h_S is a version of the invariant density of S of the form

$$h_S(x) = \frac{g(x)}{x^p(1-x)^p}$$
 with g continuous and positive on $[0,1]$.

According to the previous examples,

$$a_n \sim \left\{ egin{array}{ll} rac{1}{2g(0)} \cdot rac{n}{\log n}, & r = rac{\sqrt{5}-1}{2} \ & & \ rac{1}{2c} \cdot rac{\sin \pi lpha}{\pi lpha} \cdot n^lpha, & r > rac{\sqrt{5}-1}{2}, \end{array}
ight.$$

where $\alpha = 1/p$ and $c = g(0)a^{1-\alpha}/p^{\alpha}$.

Carrying over these results to the map T we obtain for the Perron-Frobenius operator P_T of T:

$$\frac{1}{a_n} \sum_{k=0}^{n-1} P_T^k v \to \left(\int_{\mathbb{R}} v \, d\lambda \right) h_T$$

uniformly on compact subsets of \mathbb{R} for all functions v on \mathbb{R} which are Riemann-integrable on each compact interval and satisfy

$$v(x) = O\left(|x|^{-\frac{r+1}{r}}\right)$$
 as $|x| \to \infty$.

Here $h_T = (h_S \circ \varphi) \cdot \varphi'$. In terms of the transformation T the constant c is given by $c = h_0(\infty)/(r+1)^{\alpha}$, where $h_0(\infty) = \lim_{x \to \infty} h_0(x)$.

For the special case r = 1 compare with results in [1].

ACKNOWLEDGEMENT: The author would like to thank F. Österreicher for motivating conversations on this subject and valuable suggestions.

References

- [1] J. Aaronson, Ergodic theory for inner functions of the upper half plane, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques 14 (1978), 233-253.
- [2] J. Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, Journal d'Analyse Mathématique 39 (1981), 203-234.
- [3] J. Aaronson, Random f-expansions, The Annals of Probability 14 (1986), 1037– 1057.
- [4] J. Aaronson, M. Denker and M. Urbanski, Ergodic theory for Markov fibered systems and parabolic rational maps, Transactions of the American Mathematical Society 337 (1993), 495-548.
- [5] R. L. Adler, F-expansions revisited, in Recent Advances in Topological Dynamics,
 Lecture Notes in Mathematics 318, Springer-Verlag, Berlin, 1973, pp. 1-5.
- [6] R. L. Adler and B. Weiss, The ergodic infinite measure preserving transformation of Boole, Israel Journal of Mathematics 16 (1973), 263-278.
- [7] W. Bitterlich und E. Fabrizi, Der "gelenkte" Zufall, Österreichische Forstzeitung 9 (1989).
- [8] R. Bowen, Invariant measures for Markov maps of the interval, Communications in Mathematical Physics 69 (1979), 1-17.

- [9] P. Collet and P. Ferrero, Some limit ratio theorem related to a real endomorphism in case of a neutral fixed point, Annales de l'Institut Henri Poincaré. Physique théorique 52 (1990), 283-301.
- [10] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, New York, 1971.
- [11] P. Ferrero and B. Schmitt, On the rate of convergence for some limit ratio theorem related to endomorphisms with a nonregular invariant density, preprint.
- [12] A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Transactions of the American Mathematical Society 186 (1973), 481–488.
- [13] M. Lin, Mixing for Markov operators, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 19 (1971), 231–243.
- [14] P. Manneville, Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems, Le Journal de Physique 41 (1980), 1235–1243.
- [15] G. Pianigiani and J. A. Yorke, Expanding maps on sets which are almost invariant: Decay and chaos, Transactions of the American Mathematical Society 252 (1979), 351–366.
- [16] C. Reichsöllner, Über die Größenordnung der invarianten Dichte von reellen Transformationen, Dissertation, Salzburg, 1989.
- [17] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, American Mathematical Society Translations II. Series 39 (1964), 1-36.
- [18] F. Schweiger, Numbertheoretical endomorphisms with σ -finite invariant measure, Israel Journal of Mathematics 21 (1975), 308–318.
- [19] F. Schweiger, Some remarks on ergodicity and invariant measures, The Michigan Mathematical Journal 22 (1975), 181-187.
- [20] M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel Journal of Mathematics 37 (1980), 303-314.
- [21] M. Thaler, Transformations on [0, 1] with infinite invariant measures, Israel Journal of Mathematics 46 (1983), 67–96.
- [22] M. Thaler, The iteration of the Perron-Frobenius operator when the invariant measure is infinite: An Example, manuscript, Salzburg, 1986.